Erinnerung: Ein angeordneter Körper ist ein Körper K zusammen mit einer Totalordnung \leq , so dass ausserdem für alle $x, y, z \in K$ gilt:

$$x \geqslant \frac{x \leqslant y}{0 \land y \geqslant 0} \implies x + z \leqslant y + z$$
$$x \geqslant 0 \land y \geqslant 0 \implies x \cdot y \geqslant 0$$

Betrachte einen angeordneten Körper (K, \leq) .

Proposition: Es existiert eine eindeutige injektive Abbildung $i: \mathbb{Q} \hookrightarrow K$, so dass für alle $a, b \in \mathbb{Q}$ gilt:

$$i(0) = 0$$

$$i(1) = 1$$

$$i(a+b) = i(a) + i(b)$$

$$i(a \cdot b) = i(a) \cdot i(b)$$

$$a \leqslant b \iff i(a) \leqslant i(b)$$

Konvention: Wir identifizieren \mathbb{Q} mit seinem Bild via \underline{i} .

Definition: Ein <u>angeordneter Körper</u> heisst <u>vollständig</u>, wenn jede nichtleere nach oben beschränkte Teilmenge eine kleinste obere Schranke besitzt.

Proposition: Für jedes $\underline{x \in K}$ setze $A_x := \{a \in \mathbb{Q} \mid a < x\}$. Ist K vollständig, so gilt für alle $x, y \in K$:

- (a) $x = \sup(A_x)$
- (b) $A_{x+y} = \{a+b \mid a \in A_x, b \in A_y\} = A_x \in A_y$
- (c) $\underline{A}_{-x} = \{\underline{a} b \mid a \in \mathbb{Q}^{<0}, \ b \in \mathbb{Q} \setminus A_x\}$
- (d) $\underline{A}_{x \cdot y} = \{ a \cdot b \mid a \in A_x, b \in A_y, a, b \geqslant 0 \} \cup \mathbb{Q}^{<0} \text{ im Fall } x, y \geqslant 0$
- (e) $x \leqslant y \iff A_x \subseteq A_y$

Satz: Zwischen je zwei vollständigen angeordneten Körpern existiert ein eindeutiger Isomorphismus. Berni: Sien (K, E) and (L, E) suri rolde out i. Q CsK and j. Q CsL. Zu XEK rele Ax:= {a ∈ a | i(a/<x}. Dien Renze ut willten und und den buduntt, dem wilde WER wit Eles = |x| = - n EAx and well It wie obos Schrate vom Ax = j(Ax) St middler unt duck j(u) wall alm bestirt. The f(x1 = orp (j(Ax)) no wohldefrite Abs. f. K -> L. A = Q = sup(j(Aa)) = j(a), dem brigan yelint y < j(a) Bel: (a) tack, flical=jlal. = exist be@ it y<j(b) <j(b) (b) HK, yet(: B(x+y)=B(x)+B(y) 8(x+1)= sup (j(Bx+y)) = sup (j(Bx)+j(Ay))= (c) Wxek: P(-x)=-P(x) ((d) Wx, yek: P(xy)=f(x) P(y) S(x)+f(-x) = g(x+(-x)) = f(0) = 0. (e) Ux, yek: x &y => g(x) & g(y) Benke (d) fall x, y \ge 0. So A bunke (c) $x \in \gamma \iff A_{\kappa} \subseteq A_{\gamma} \iff j(A_{\kappa}) \subseteq j(A_{\gamma}) \implies f(\kappa) \subseteq f(\gamma).$ Analy, trivijely yel whe 15:= [Se@ | j(b) <7 } Zuren: (Ax = Bg(x)). Dan felt g(loch) = sup (lg(x) = sup (Ax)=x - L g(7) := ry(c(87)) Be, (f) VXEK; g(f(x))= x. (Yask : j (a) (sup (j(Ax)) = f(x) Da Ax lei Pravium beide, it ila/ Lflat = acbellions" 5" Andy Y YEL: P(g(4))=7 - L " (=)" in (e) Y be Belat : j(b) < l(x) = ∃ a∈A<x: j(b) < j(a) feels! = beack = beack .~ "=" Eindhiprint, Folh ans X= rp (AZE).

Satz: Es existiert ein vollständiger angeordneter Körper.

Definition: Jeden solchen bezeichnen wir mit \mathbb{R} und nennen seine Elemente *reelle Zahlen*.

Konstruktion 1 durch Cauchyfolgen:

Definition: (a) Eine Folge $\underline{x} = (x_n)$ in \mathbb{Q} heisst *Cauchyfolge* wenn gilt

$$\forall \varepsilon \in \mathbb{Q}^{>0} \ \exists n_0 \ \forall m, n \geqslant n_0 \colon |x_m - x_n| < \varepsilon$$

(b) Zwei Cauchyfolgen (x_n) und (y_n) in \mathbb{Q} heissen äquivalent wenn gilt

$$\forall \varepsilon \in \mathbb{Q}^{>0} \ \exists n_0 \ \forall n \geqslant n_0 \colon |x_n - y_n| < \varepsilon$$

Satz: (a) Dies definiert eine Äquivalenzrelation auf der Menge aller Cauchyfolgen in \mathbb{Q} . Wir bezeichnen die Äquivalenzklasse von (x_n) mit $[(x_n)]$.

(b) Für je zwei Cauchyfolgen (x_n) und (y_n) in $\mathbb Q$ hängen die Äquivalenzklassen

$$\underline{[(x_n)] + [(y_n)]} := \underline{[(x_n + y_n)]},
\underline{[(x_n)] \cdot [(y_n)]} := \underline{[(x_n y_n)]},
\underline{[(x_n)] \leqslant [(y_n)]} :\Leftrightarrow \forall \varepsilon \in \mathbb{Q}^{>0} \exists n_0 \ \forall n \geqslant n_0 \colon x_n \leqslant y_n + \varepsilon$$

nur von den Äquivalenzklassen $[(x_n)]$ und $[(y_n)]$ ab.

(c) Die Menge aller Äquivalenzklassen von Cauchyfolgen in \mathbb{Q} zusammen mit + und \cdot und \leq sowie dem Nullelement $\underline{0 := [(0)]}$ und dem Einselement $\underline{1 := [(1)]}$ bildet einen vollständigen angeordneten Körper.

Konstruktion 2 durch Dedekind-Schnitte:

wach also berteach

Definition: Ein *Dedekind-Schnitt* ist ein nichtleeres echtes Anfangssegment $A \subseteq \mathbb{Q}$ bezüglich \leq , das kein maximales Element besitzt.

Proposition: Jedes $r \in \mathbb{Q}$ und je zwei Dedekind-Schnitte A und B induzieren Dedekind-Schnitte

$$\frac{i(r) := \{a \in \mathbb{Q} \mid a < r\}}{A + B := \{a + b \mid a \in A, b \in B\}}$$

$$-A := \{a - b \mid a \in \mathbb{Q}^{<0}, b \in \mathbb{Q} \setminus B\}$$

$$A \cdot B := \begin{cases} \frac{\{a \cdot b \mid a \in A, b \in B, a, b \geqslant 0\} \cup \mathbb{Q}^{<0}}{A \cdot B} & \text{falls } 0 \in A \text{ und } 0 \notin B, \\ -(A \cdot (-B)) & \text{falls } 0 \notin A \text{ und } 0 \notin B, \\ (-A) \cdot (-B) & \text{falls } 0 \notin A \text{ und } 0 \notin B, \end{cases}$$

$$\text{Station}$$

$$\text{Station}$$

sowie die Relation

$$A \leqslant B \iff A \subseteq B$$
.

Satz: (a) Die Menge $\mathbb D$ aller Dedekind-Schnitte mit den Operationen + und \cdot , den Elementen $\underline{0:=i(0)}$ und $\underline{1:=i(1)}$ sowie der Relation \leq bildet einen vollständigen angeordneten Körper.

(b) Die Abbildung $\underline{i} \colon \mathbb{Q} \to \mathbb{D}$ ist injektiv und verträglich mit + und \cdot und \leqslant .

Konvention: Wir identifizieren \mathbb{Q} stillschweigend mit seinem Bild via der Abbildung i.

But, (b)
$$i(r)+i(s) = \{ae(e \mid acr) + \{be(e \mid bcs)\} = \{ae(e \mid a,be(e), acr, bcs\} = \{ce(e \mid c \mid cr+s)\}$$
.

Ville c-scacr

while $b:=c_acs$.

 $r \leq s \iff \{ae(e \mid acr)\} \subseteq \{ae(e \mid acs)\} \implies c=aes$.

(a) Norm & Am. in t r
 $\forall A: A+(-A)=\{a+b\mid aeA\} = \{ae(a \mid bc)\} \implies aeb-ce(ae) \implies aeb-ce(ae)$
 $c=aeb$.

Enche a ale c dul atc = c-a will

A A

Vieldule: Fiche ace A wh ce a A wit c-a beliefy blic

Thomas Element begl. Publishibiliti.

Si $O \in A$. First, $\exists B$. $A \cdot B = \{c \in Q \mid c \in 1\}$ and $O \in B$. $QL : \{a \cdot b \mid a \in A, b \in B, a, b \geq 0\} \cup Q^{CO} = \{c \in Q \mid c \in 1\}$

 $B := Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{a} + b \mid a \in Q \land A \right\}.$ $A = Q^{\leq 0} \cup \left\{ \frac{1}{$

de a >al

Vollstå dig lait: In X ene withleave wal de besture Pege on Deddid Shuth. Situ S:= UX. C. & Arfangunt. in exteler Not Ambre exist in Delinación A int AREX: BEA del. REA. Blood S CA, also vale de beauter. Wire act en Namin, wire BCA it acl of a wine Namin und of Alist Sin Delidation, due School on X.